Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).

نویسندگان

  • B D McKersie
  • Y Chen
  • M de Beus
  • S R Bowley
  • C Bowler
  • D Inzé
  • K D'Halluin
  • J Botterman
چکیده

Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To further examine the relationship between oxidative and freezing stresses, the expression of SOD was modified in transgenic alfalfa (Medicago sativa L.). The Mn-SOD cDNA from Nicotiana plumbaginifolia under the control of the cauliflower mosaic virus 35S promoter was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation. Two plasmid vectors, pMitSOD and pChlSOD, contained a chimeric Mn-SOD construct with a transit peptide for targeting to the mitochondria or one for targeting to the chloroplast, respectively. The putatively transgenic plants were selected for resistance to kanamycin and screened for neomycin phosphotransferase activity and the presence of an additional Mn-SOD isozyme. Detailed analysis of a set of four selected transformants indicated that some had enhanced SOD activity, increased tolerance to the diphenyl ether herbicide, acifluorfen, and increased regrowth after freezing stress. The F1 progeny of one line, RA3-ChlSOD-30, were analyzed by SOD isozyme activity, by polymerase chain reaction for the Mn-SOD gene, and by polymerase chain reaction for the neo gene. RA3-ChlSOD-30 had three sites of insertion of pChlSOD, but only one gave a functional Mn-SOD isozyme; the other two were apparently partial insertions. The progeny with a functional Mn-SOD transgene had more rapid regrowth following freezing stress than those progeny lacking the functional Mn-SOD transgene, suggesting that Mn-SOD serves a protective role by minimizing oxygen free radical production after freezing stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance.

To determine whether overexpression of Fe-superoxide (SOD) dismutase would increase superoxide-scavenging capacity and thereby improve the winter survival of transgenic alfalfa (Medicago sativa L.) plants, two genotypes were transformed with the vector pEXSOD10, which contains a cDNA for Arabidopsis Fe-SOD with a chloroplast transit peptide and cauliflower mosaic virus 35S promoter. A novel Fe-...

متن کامل

Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase.

Transgenic alfalfa (Medicago sativa) expressing Mn-superoxide dismutase cDNA tended to have reduced injury from water-deficit stress as determined by chlorophyll fluorescence, electrolyte leakage, and regrowth from crowns. A 3-year field trial indicated that yield and survival of transgenic plants were significantly improved, supporting the hypothesis that tolerance of oxidative stress is impor...

متن کامل

Over-Expression of Arabidopsis EDT1 Gene Confers Drought Tolerance in Alfalfa (Medicago sativa L.)

Alfalfa (Medicago sativa L.) is an important legume forage crop with great economic value. However, as the growth of alfalfa is seriously affected by an inadequate supply of water, drought is probably the major abiotic environmental factor that most severely affects alfalfa production worldwide. In an effort to enhance alfalfa drought tolerance, we transformed the Arabidopsis Enhanced Drought T...

متن کامل

Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.

The antioxidant composition and relative water stress tolerance of nodulated alfalfa plants (Medicago sativa L. x Sinorhizobium meliloti 102F78) of the elite genotype N4 and three derived transgenic lines have been studied in detail. These transgenic lines overproduced, respectively, Mn-containing superoxide dismutase (SOD) in the mitochondria of leaves and nodules, MnSOD in the chloroplasts, a...

متن کامل

Growth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis

Lead is a nonessential element that has a negative effect on plant growth and development. Plant symbiosis with arbuscular mycorrhizal fungi (AMF) in soils contaminated with heavy metals can affect growth of plant, nutrition and tolerance against heavy metals. In this study, the effect arbuscular mycorrhizal fungi Glomus intraradices on the growth, photosynthetic pigments, protein content, prol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 103 4  شماره 

صفحات  -

تاریخ انتشار 1993